Seonamhaeicola maritimus sp. nov., isolated from coastal sediment.

Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China. Marine College, Shandong University at Weihai, Weihai 264209, PR China. Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.

International journal of systematic and evolutionary microbiology. 2020;(2):902-908
Full text from:

Abstract

A Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped and orange-pigmented bacterium, designated 1505T, was isolated from marine sediment that was obtained off the coast of Weihai, PR China. Strain 1505T was found to grow at 10-35 °C (optimum, 28 °C), at pH 6.0-9.0 (optimum, 7.5) and in the presence of 1-4 % (w/v) NaCl (optimum, 2 %). Cells were positive for oxidase and catalase activity. The 16S rRNA gene based phylogenetic analysis revealed that the nearest phylogenetic neighbours of strain 1505T were Seonamhaeicola algicola Gy8T (97.1 %), Seonamhaeicola marinus B011T (96.3 %) and Seonamhaeicola aphaedonensis KCTC 32578T (95.6 %). Based on phylogenomic analysis, the average nucleotide identity values between strain 1505T and S. algicola Gy8T, S. marinus B011T and S. aphaedonensis KCTC 32578T were 75.9, 76.0 and 77.7 %, respectively; the digital DNA-DNA hybridization values based on the draft genomes between strain 1505T and S. algicola Gy8T, S. marinus B011T and S. aphaedonensis KCTC 32578T were 20.0, 20.7 and 21.4 %, respectively. Menaquinone-6 (MK-6) was detected as the major respiratory quinone. The dominant cellular fatty acids were iso-C15 : 1 G and C18 : 1ω9c. The DNA G+C content of strain 1505T was 33.3 mol%. The polar lipids included phosphatidylethanolamine, six aminolipids and four unidentified lipids. Based on its phylogenetic and phenotypic characteristics, strain 1505T is considered to represent a novel species of the genus Seonamhaeicola, for which the name Seonamhaeicola maritimus sp. nov. is proposed. The type strain is 1505T (=KCTC 72528T=MCCC 1H00389T).